A Coarse-to-Fine Approach for Ship Detection in SAR Image Based on CFAR Algorithm
نویسندگان
چکیده
Among ship detection methods for SAR image, constant false alarm rate (CFAR) is the most important one. However, several factors, such as detector parameter and distribution of ocean clutter, affect the performance of CFAR detection. This paper proposes a novel hierarchical complete and operational ship detection approach based on detector parameter estimation and clutter pixel replacement, which is considered a sequential coarse-to-fine elimination process of false alarms. First, a simple barycentric algorithm is adopted to estimate target-window size, and the morphology method is used to estimate false alarm rate for CFAR detector. Second, a clutter pixel replacement approach based on the statistical features of sea clutter is presented to obtain statistically independent, stationary, and Weibull distributed random data for CFAR detector to remove all false alarms. Experimental results of the detection methods on a SAR image dataset show that the proposed approach is effective in reducing false alarms and obtains a satisfactory ship detection performance.
منابع مشابه
Ship Detection in SAR Image Based on the Alpha-stable Distribution
This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alphastable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR image...
متن کاملMoving Target Detection Based on the Spreading Characteristics of SAR Interferograms in the Magnitude-Phase Plane
We propose a constant false alarm rate (CFAR) algorithm for moving target detection in synthetic aperture radar (SAR) images based on the spreading characteristics of interferograms on the magnitude-phase (M-P) plane. This method is based on the observation that, in practice, both moving and stationary targets along with clutter are located at different regions in the M-P plane, and hence reaso...
متن کاملThe Extended Sub-look Analysis In Polarimetric SAR Data For Ship Detection
The monitoring of maritime areas with remote sensing is essential for security reasons and also for the conservation of environment. The synthetic aperture radar (SAR) can play an important role in this matter by considering the possibility of acquiring high-resolution images at nighttime and under cloud cover. Recently, the new approaches based on the sub-look analysis for preserving the infor...
متن کاملA New Synthetical Method of Feature Enhancement and Detection for SAR Image Targets
Target detection is important content in Synthetic Aperture Radar (SAR) image applications. There is a common target detection method, which is called the Constant False Alarm Ratio (CFAR) detector. But it must satisfy the condition under strong contrast ratio between target area and background clutter area. In fact, it is very difficult for SAR images to satisfy the condition. In order to enha...
متن کاملThe SUMO Ship Detector Algorithm for Satellite Radar Images
Search for Unidentified Maritime Objects (SUMO) is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR) images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, Cand X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from...
متن کامل